#英伟达走向两万亿的方法#_tiknovel-最新最全的nft,web3,AI技术资讯技术社区

#英伟达走向两万亿的方法#

2023-11-17 10:18:50  浏览:133  作者:管理员
#英伟达走向两万亿的方法#

8 月下旬,英伟达召开例行全员会。当时英伟达股价随着销量大涨,市值稳定地回到万亿美元以上,员工手中股票的价值已经是年初的三倍多。英伟达 CEO 黄仁勋提醒他们,不要太早激动,公司的市值会到 2 万亿美元。

全球只有苹果、微软、Google 的市值到过 2 万亿美元,各自牢牢抓住十多亿用户。它们也全部都是英伟达成为万亿公司的原因。ChatGPT 火爆后,它们向英伟达下了总额数十亿美元的大订单。

本周,英伟达发布了新款 GPU H200,与上一代最大的差别是用了新款内存芯片,连计算能力都没明确公布,其市值就应声涨了 700 多亿美元。英伟达称已经给 H200 找到了买主——明年它会密集出现在亚马逊、Google、微软等公司的数据中心中。

在英伟达冲向 2 万亿美元的道路上,这些客户还会继续下大订单,但也会和它直接竞争。今天微软的 Ignite 大会是这种关系的直接体现,微软一边发布自研的 AI 芯片 Maia 100,一边邀请黄仁勋到场宣布新的合作。

微软之外,Meta、Google、亚马逊、特斯拉等英伟达的大客户,今年都投入更多资源研发 AI 芯片,甚至 OpenAI 都开始筹备芯片项目。

两倍于 LVMH 的利润率,大客户们自研芯片的动力

英伟达成立至今 30 年,前 20 多年专精于游戏显卡这一个小众市场。加密货币带来的巨大挖矿需求让英伟达激活了显卡销量,英伟达的业绩和市值因此跃升,不仅收入在 2018 年冲破百亿美元、利润率冲上 30%,股价也在 2016 年到 2018 年 10 月间大涨 800%。随着比特币在新冠疫情肆虐之际冲上 6.8 万美元,英伟达的市值也逼近万亿美元,成为最值钱的芯片公司。

2023 年 3 月发布的 GPT-4 点燃了整个人工智能行业。根据芯片研究机构 SemiAnalysis 获取的信息,OpenAI 用 2.5 万张英伟达 A100 GPU 训练了三个多月,才做出 GPT-4 大模型。

A100 是英伟达 2020 年发布的 GPU。在 GPT-4 发布前几个月,英伟达推出了 H100 GPU,把计算能力提升到 A100 的 3 倍,专门为 Transformer 架构(大模型的底层)做了优化——当时 ChatGPT 还没有面世。

对于想要研发更强大模型的 OpenAI 和追赶 OpenAI 的公司,H100 都是需要大量囤积的战略资源,它立即变得供不应求。OpenAI 发布 GPT-4 后,两度因为 GPU 短缺停止付费用户注册。

埃隆·马斯克(Elon Musk)说 H100 “比毒品都难买”。迫切需要算力的公司们,转而订购 A100。受美国政府贸易限制,中国公司只能购买降低性能的 A800 和 H800。这些 GPU 的产能也远远跟不上需求。

红杉资本在今年 9 月称,许多公司的增长瓶颈不是客户需求,而是英伟达最新 GPU 的产能。

英伟达是设计公司,并不直接生产芯片,它需要请台积电生产芯片,从其他公司采购高性能内存,再交给供应商组装成一张卡。一颗 H100 的成本约 3000 美元,而英伟达卖 30000 多美元,翻十倍:

- 英伟达向台积电下订单,用 4 纳米的芯片产线制造 GPU 芯片,平均每颗成本 155 美元。

- 英伟达从 SK 海力士(未来可能有三星、美光)采购六颗 HBM3(High Bandwidth Memory,高带宽内存)芯片,成本大概 2000 美元。这是因为 GPU 处理大模型任务,还需要搭载比手机、电脑更大、数据传输速度更快的内存,才能保证效率。

- 台积电芯片产线生产出来的 GPU 和英伟达采购的 HBM3 芯片,一起送到台积电 CoWoS 封装产线,以性能折损最小的方式加工成 H100,成本大约 723 美元。

- H100 被送到其他英伟达的供应商处,4 颗或 8 颗组装在一起,加上数据传输单元,做成服务器。

利润丰厚的 H100 推动英伟达利润率攀升到 40%,超过了所有芯片同行,达到全球最大奢饰品集团 LVMH 的近两倍。

英伟达高昂的利润,就是它客户的成本。为了借着大模型浪潮抓住用户、激活业务,许多大公司采购 GPU 后,不惜赔钱对外提供服务。GPT-4 发布后,微软将其用于必应搜索,让用户免费使用。

黄仁勋常说的 “买得 GPU 越多,省的越多” 成为过去式。大公司买得越多,英伟达赚的越多,它们亏损越多。一个显而易见的选择出现了:自研一款芯片,可能省的更多。

过去十多年,研发一款芯片的难度持续下降:台积电、三星等代工厂存在,让它们不用担心芯片代工问题;芯片人才充分流动,降低了设计芯片的难度。

评论区

共 0 条评论
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~

【随机内容】

返回顶部